Myosin V
نویسندگان
چکیده
Calcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due to a compact conformation that is possible only with the whole molecule. The paradoxical finding that dFull moved actin in EGTA suggests that binding of the molecule to the substratum turns it on, perhaps mimicking cargo activation. Calcium slows, but does not stop the rate of actin movement if excess calmodulin (CaM) is present. Without excess CaM, calcium binding to the high affinity sites dissociates CaM and stops motility. We propose that a folded-to-extended conformational change that is controlled by calcium and CaM, and probably by cargo binding itself, regulates myosin V's ability to transport cargo in the cell.
منابع مشابه
Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons.
Myosin V-null mice (dilute-lethal mutants) exhibit apparent neurological defects that worsen from birth until death in the third postnatal week. Although myosin V is enriched in brain, the neuronal function of myosin V is unclear and the underlying cause of the neurological defects in these mice is unknown. To aide in understanding myosin V function, we examined the distribution of myosin V in ...
متن کاملBrain myosin-V, a calmodulin-carrying myosin, binds to calmodulin-dependent protein kinase II and activates its kinase activity.
Myosin-V, an unconventional myosin, has two notable structural features: (i) a regulatory neck domain having six IQ motifs that bind calmodulin and light chains, and (ii) a structurally distinct tail domain likely responsible for its specific intracellular interactions. Myosin-V copurifies with synaptic vesicles via its tail domain, which also is a substrate for calmodulin-dependent protein kin...
متن کاملLocalization of unconventional myosins V and VI in neuronal growth cones.
Class V and VI myosins, two of the six known classes of actin-based motor genes expressed in vertebrate brain (Class I, II, V, VI, IX, and XV), have been suggested to be organelle motors. In this report, the neuronal expression and subcellular localization of chicken brain myosin V and myosin VI is examined. Both myosins are expressed in brain during embryogenesis. In cultured dorsal root gangl...
متن کاملVesicle-associated brain myosin-V can be activated to catalyze actin-based transport.
Myosin-V has been linked to actin-based organelle transport by a variety of genetic, biochemical and localization studies. However, it has yet to be determined whether myosin-V functions as an organelle motor. To further investigate this possibility, we conducted a biochemical and functional analysis of organelle-associated brain myosin-V. Using the initial fractionation steps of an established...
متن کاملModel for processive movement of myosin V and myosin VI
Myosin V and myosin VI are two classes of two-headed molecular motors of the myosin superfamily that move processively along helical actin filaments in opposite directions. Here we present a hand-over-hand model for their processive movements. In the model, the moving direction of a dimeric molecular motor is automatically determined by the relative orientation between its two heads at free sta...
متن کاملEffect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V.
Mouse myosin V is a two-headed unconventional myosin with an extended neck that binds six calmodulins. Double-headed (heavy meromyosin-like) and single-headed (subfragment 1-like) fragments of mouse myosin V were expressed in Sf9 cells, and intact myosin V was purified from mouse brain. The actin-activated MgATPase of the tissue-purified myosin V, and its expressed fragments had a high V(max) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 164 شماره
صفحات -
تاریخ انتشار 2004